Sugar — the bitter truth

Robert Lustig, M.D.
Division of Endocrinology
Department of Pediatrics
UCSF

Nutrition and Health Conference, San Francisco, CA May 9, 2011

• No disclosures

Venus von Willendorf, Vienna Museum of Natural History
Dated to 22,000 BCE, unearthed in 1908

Obesity has been part of the human condition since there were humans

But something’s happened—
How did the world get so obese?
And how so fast?

The First Law of Thermodynamics

The total energy inside a closed system remains constant.

Two interpretations:

Fat for Life?
Six Million Kids Are Seriously Overweight—What Families Can Do

The First Law of Thermodynamics

The total energy inside a closed system remains constant.
The First Law of Thermodynamics

In Calories

Out Calories

Weight Gain

Obesity is the result of two aberrant behaviors

Total Caloric Intake

↑ 275 kcal in teen boys

Children 2-17 yrs, CSFII (USDA) 1989-91 vs. 1994-95
Fat Intake: Grams

†5 g (45 cal) in teen boys

Prevalence of Obesity Compared to Percent Calories from Fat Among US Adults

Carbohydrate Intake: Grams

†57 g (228 cal) in teen boys

Secular trends in specific food intake 1989-1996

Beverage Intake

†41% soft drinks

†35% fruit drinks
Beverage Intake

- 41% soft drinks
- 35% fruit drinks

Children 2-17 yrs, CSFII (USDA) 1989-91 vs. 1994-95

One can of soda/day = 150 cal x 365 d/yr ÷ 3500 cal/lb = 15.6 lbs/yr

High Fructose Corn Syrup

- Current US annual consumption of HFCS
- 63 pounds per person

High Fructose Corn Syrup is 42-55% Fructose; Sucrose is 50% Fructose

10 Most Obese States

- > 30% obese

10 Laziest States

- < 63% active
Secular trend in fructose consumption

Natural consumption of fruits and vegetables
• 15 gm/day

Prior to WWII (estimated):
• 16-24 gm/day

1977-1978 (USDA Nationwide Food Consumption Survey):
• 37 gm/day (8% of total caloric intake)

1994 (NHANES III):
• 54.7 gm/day (10.2% of total caloric intake)

Adolescents:
• 72.8 gm/day (12.1% of total caloric intake)
• 25% consumed at least 15% of calories from fructose

The perfect storm from three political winds
The perfect storm from three political winds

1. Richard Nixon and USDA Secretary Earl Butz (1973)
 • food should never be an issue in a presidential election
2. The advent of High Fructose Corn Syrup
 • invented in 1966 in Japan
 • introduced to the American market in 1975

Percent of Gross National Product spent on food, by country

Influence of corn sweeteners on the price of sugar

Juice is sucrose:
Change in BMI z-score in lower socioeconomic status children versus number of fruit juice servings per day
The perfect storm from three political winds

1. Richard Nixon and USDA Secretary Earl Butz (1973)
 - food should never be an issue in a presidential election

2. The advent of High Fructose Corn Syrup
 - invented in 1966 in Japan
 - introduced to the American market in 1975

3. The USDA, AMA, and AHA call for dietary fat reduction
 - Early 1970's: discovery of LDL
 - Mid 1970's: Dietary fat raises LDL (A → B)
 - Late 1970's: LDL correlated with CVD (B → C)
 - 1982: If A → B, and B → C, then A → C,
 therefore no A, no C

The macronutrient wars 1970-1980

Seven Countries
Correlation of CHD with dietary fat

Seven Countries
Correlation of CHD with dietary fat

The lipoprotein continuum

"Total LDL" won’t tell you particle number -
There’s more LDL↓ than LDL↓ at the same total concentration
TG and HDL change with LDL sizing

The low-fat craze

The content of low-fat *home-cooked* food can be controlled

But low-fat *processed* food means substitution with carbohydrate

Which carbohydrate?

Either

- High fructose corn syrup (55% fructose)
- Sucrose (50% fructose)

 e.g. Nabisco Snackwells® Oreos
 (−2g fat, +13g CHO (+4g sugars))

Adulteration of our food supply

Addition of fructose

- palatability (esp. with decreased fat)
- browning agent

Removal of fiber

- shelf life
- freezing

Substitution of trans-fats

- hardening agent, shelf life
- now being removed due to CVD risk

Fructose is not glucose

- Fructose is 7 times more likely than glucose to form Advanced Glycation End-Products (AGE’s)
- Fructose does not suppress ghrelin
- Acute fructose does not stimulate insulin (or leptin)
- Hepatic fructose metabolism is different
- *Chronic* fructose exposure promotes the Metabolic Syndrome

Metabolism of Glucose

Hepatocyte

- Glucose (80%)
- 96 kcal
- Insulin

Muscle

- Glucose (20%)
Ethanol is a carbohydrate

CH₃-CH₂-OH

But ethanol is also a toxin

<table>
<thead>
<tr>
<th>Acute ethanol exposure</th>
<th>Acute fructose exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CNS depression</td>
<td>• Hypothermia</td>
</tr>
<tr>
<td>• Vasodilatation, decreased BP</td>
<td>• Tachycardia</td>
</tr>
<tr>
<td>• Hypothermia</td>
<td>• Myocardial depression</td>
</tr>
<tr>
<td>• Tachycardia</td>
<td>• Variable pupillary responses</td>
</tr>
<tr>
<td>• Hypertension</td>
<td>• Respiratory depression</td>
</tr>
<tr>
<td>• Diuresis</td>
<td>• Hypoglycemia</td>
</tr>
<tr>
<td>• Hypoglycemia</td>
<td>• Loss of fine motor control</td>
</tr>
</tbody>
</table>
Relations between fructose, uric acid and hypertension in NHANES IV adolescents

Relations between fructose, uric acid and hypertension in NHANES IV adolescents

Fructose increases de novo lipogenesis in normal adults

Fructose increases de novo lipogenesis, triglycerides and free fatty acids in normal adults

Faeh and Schwarz, Diabetes 54:1907, 2005

Sugar sweetened beverages (kcal/day)

Associations between sugar sweetened beverage consumption and ALT in obese children

African American (n = 80)

Caucasian (n = 163)

r = 0.22

P = 0.049

r = 0.20

P = 0.119

 отметить певчего
Protein Glycation and the Metabolic Syndrome

The furan ring of fructose is more unstable, so at equilibrium, fructose exists in the linear form.

Generation of reactive oxygen species by carbohydrate

Non-enzymatic glycation: fructose >> glucose

Serum fructose levels after 75 gm (300 kcal) oral bolus
Serum fructose levels after 75 gm (300 kcal) oral bolus

![Graph showing serum fructose levels over time][1]

Hepatocyte death in vitro upon fructose exposure (after generation of H₂O₂)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>ED₅₀</th>
<th>ED₅₀ (with H₂O₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fructose</td>
<td>1.5 ± 0.13 M</td>
<td>12 ± 2 mM</td>
</tr>
<tr>
<td>Glucose</td>
<td>>1.5 M</td>
<td>1.5 M</td>
</tr>
<tr>
<td>Glycoaldehyde</td>
<td>20 ± 2 mM</td>
<td>0.5 ± 0.1 mM</td>
</tr>
<tr>
<td>Glycerol</td>
<td>5 ± 0.5 mM</td>
<td>0.02 ± 0.002 mM</td>
</tr>
</tbody>
</table>

Prevented by addition of:
- Antioxidant vitamins (VitB₁, VitB₆, VitC)
- P₄₅₀ inhibitors
- Hydroxyl radical and carbonyl scavengers
- Heavy metal chelators

Lee et al. Chemico-biological Interactions 178:332, 2009

Chronic ethanol exposure
- Hematologic disorders
- Electrolyte abnormalities
- Hypertension
- Cardiac dilatation
- Cardiomyopathy
- Dyslipidemia
- Pancreatitis
- Malnutrition
- Obesity
- Hepatic dysfunction (ASH)
- Fetal alcohol syndrome
- Addiction

Chronic fructose exposure
- Hypertension
- Cardiac dilatation
- Cardiomyopathy
- Dyslipidemia
- Pancreatitis
- Malnutrition
- Obesity
- Hepatic dysfunction (ASH)
- Fetal alcohol syndrome
- Addiction

What’s the difference?

<table>
<thead>
<tr>
<th>Calories</th>
<th>150</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent CHO</td>
<td>10.5% (sucrose)</td>
<td>3.6% (alcohol)</td>
</tr>
<tr>
<td>Calories from</td>
<td>75 (4.1 kcal/gm)</td>
<td>75 (glucose) 60 (maltose)</td>
</tr>
<tr>
<td>1st pass GI metabolism</td>
<td>0%</td>
<td>10%</td>
</tr>
<tr>
<td>Calories reaching liver</td>
<td>90</td>
<td>92</td>
</tr>
</tbody>
</table>

What’s the difference?

<table>
<thead>
<tr>
<th>Calories</th>
<th>150</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent CHO</td>
<td>10.5% (sucrose)</td>
<td>3.6% (alcohol)</td>
</tr>
<tr>
<td>Calories from</td>
<td>75 (4.1 kcal/gm)</td>
<td>75 (glucose) 60 (maltose)</td>
</tr>
<tr>
<td>1st pass GI metabolism</td>
<td>0%</td>
<td>10%</td>
</tr>
<tr>
<td>Calories reaching liver</td>
<td>90</td>
<td>92</td>
</tr>
</tbody>
</table>

1st pass GI metabolism 0% 10%
Calories reaching liver 90 92

Calories
- Alcohol: 90 kcal (7 kcal/gm)

Percent CHO
- Sugar: 10.5% (sucrose), 3.6% (alcohol)
- Alcohol: 3.6% (alcohol)

Calories from
- Fructose: 75 kcal (4.1 kcal/gm)
- Other carbs: 75 kcal (glucose), 60 kcal (maltose)
- Alcohol: 75 kcal (4.1 kcal/gm)
- Alcohol: 60 kcal (maltose)
What's the difference?

Calories	150	150
Percent CHO	10.5% (sucrose)	3.6% (alcohol)
Calories from		
fructose	75 (4.1 kcal/gm)	
other carbs	75 (glucose)	60 (maltose)
alcohol	90 (7 kcal/gm)	
1st pass GI metabolism	0%	10%
Calories reaching liver	90	92

Recognition at the American Heart Association

AHA Scientific Statement

Dietary Sugars Intake and Cardiovascular Health
A Scientific Statement From the American Heart Association
Rachel K. Johnson, PhD, MPH, RD, Chria Lawrence J. Appel, MD, MPH, FAHA;
Michael Brains, PhD, FADA, Barbara V. Howard, PhD, FADA;
Michael Letts, PhD, FADA, Robert J. Lavelle, MD; Frank Sacks, MD, FASA;
Lyne M. Stetten, PhD, MPH, RD, FADA; Daniel W. Wirtz-Kerstel, PhD, RD
on behalf of the American Heart Association Nutrition Committee of the Council on Nutrition, Physical Activity, and Metabolism and the Council on Epidemiology and Prevention

Recommends reduction in sugar intake from 22 tsp/day to 9 tsp/day (males) and 6 tsp/day (females)

The First Law of Thermodynamics

Obligate weight gain

Calories Out

Calories In

Weight Gain

Recognition at the American Heart Association
The First Law of Thermodynamics

Obligate weight gain

The two aberrant behaviors are a result of our biochemistry
Our biochemistry is a result of our environment

Collaborators

UCSF Weight Assessment for Teen and Child Health
Elvira Isganaitis, M.D.
Michele Mietus-Snyder, M.D.
Andrea Garber, Ph.D., R.D.
Patricia Tsai, M.D., M.P.H.
Kristine Madsen, M.D., M.P.H.
Stephanie Nguyen, M.D.
Carolyn Jask, M.D., M.P.H.
Jung Sub Lim, M.D., Ph.D.

UCSF Dept. of Epidemiology and Biostatistics
Saunak Sen, Ph.D.

UC Berkeley Dept. of Nutritional Sciences
Jean-Marc Schwarz, Ph.D.
Sharon Fleming, Ph.D.
Lorene Ritchie, Ph.D.

UCSF Institute for Health Policy Studies
Laura Schmidt, Ph.D., M.P.H., L.C.S.W.
Claire Brindis, Dr.P.H.